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Abstract. The transmission coefficient for tunnelling through double barriers and super- 
lattices of GaAs-Ga, _,AI,As, under transverse-magnetic-field action, has been calculated 
using a transfer matrix model. In this work, the one-dimensional effective-mass equation 
has been first solved analytically by means of the confluent hypergeometric functions as 
envelope functions. 

Since the advent of exacting epitaxial growth techniques, particularly molecular-beam 
epitaxy and metallo-organic chemical vapour deposition, realization of superlattices and 
quantum well structures has become possible. The superlattices, as originally proposed 
by Esaki and Tsu [ l ] ,  have found wide application in many new devices, such as 
photodetectors [2-51, transistors [6,7] and light emitters [8]. The most thoroughly 
studied material system has been GaAs-Ga, _,AI,As owing to the relative ease of its 
fabrication as well as its close lattice matching. Several experimental measurements 
have recently confirmed the presence of resonant tunnelling in single- and double- 
quantum-well structures [9-121. Optical absorption measurements [ 131 have also inde- 
pendently verified the formation of superlattice minibands arising from the coupling of 
adjacent quantum states. 

The theories to explain the resonant tunnelling phenomena generally can be divided 
into three different approaches: the use of the Wentzel-Kramers-Brillouin (WKB) 
approximation [14, 151 (which is valid if the barrier energy varies slowly compared with 
the scale of the electron wavelength); a Monte Carlo solution of the semiclassical 
Boltzmann transport equation [16, 171 (in which case a quasi-particle of electron is 
assumed); the transfer matrix approach which gives the transmissivity of the structure 
as a function of the energy directly. The WKB approximation is not valid in the devices 
of greatest interest, those with narrow barriers, because the potential changes rapidly 
in these structures. For the WKB method to be valid, the change in the wavelength in the 
potential energy relative to the kinetic energy must be small, i.e. the wavelength must 
be small compared with the distance over which the momentum changes appreciably. 
This situation is not satisfied in the structures in which barriers are narrow, especially at 
low incident carrier energies. The Monte Carlo method is useful because it includes 
phonon scattering but does not easily lend itself to the calculation of the structure 
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transparency. In the transfer matrix model, Tsu and Esaki [ 181 first provided a theoretical 
description of the electron tunnelling current density in a multilayer structure. Their 
approach involves the solution of the Schrodinger equation in each region of the device 
under the assumption that the effective mass is constant throughout, and phonon 
scattering can be neglected. The tunnelling transmission coefficient is then determined 
by the transfer matrix method. A 2 X 2 matrix at each interface is formed by matching 
the continuity of the wavefunctions and their derivatives. Successive multiplication of 
these matrices then couples the incident wavevector to the outgoing wavevector of the 
heterostructure stack. 

The present availability of high-quality semiconductor heterostructures and high 
magnetic fields has stimulated many experimental studies of magnetotransport in low- 
dimensional electronicsystems. A particular topic of increasing current interest concerns 
the effect of a transverse magnetic field on the tunnel current because the electrons are 
forced to execute cyclotron motion while tunnelling through the barrier in the plane 
perpendicular to the field [19-241. In this paper, such an effect on the tunnelling prob- 
ability of a charged particle through a double barrier (DB) and superlattice of GaAs- 
Ga, _.Al,As has been investigated in the transfer matrix approach, but using the exact 
solution of the associated one-dimensional effective-mass equation. 

Let us consider a beam of particles, with kinetic energy E and effective mass m, (mb 
inside the barrier), incident on a rectangular potential barrier of height Vo and width d.  
According to quantum theory, the electron, even if its energy is lower than Vo, can 
traverse the barrier by quantum mechanical tunnelling. The effect of an applied magnetic 
field B on the tunnel current in this structure is expected to be largest when the field is 
acting perpendicular to the current direction [19]. This has a simple classical analogue: 
when the electron is moving perpendicular to B ,  the Lorentz force -1elu X B is a 
maximum. In the case in which B ( 1  x and z is the heterostructure growth direction, the 
Hamiltonian of the system is given by [25] 

(1) 
wherej = w, b and Vo represents the barrier potential profile. We have chosen the gauge 
A = (0, -Bz, 0). By using plane waves in the x and y direction (and neglecting spin 
effects), one finds that the envelope function q ( z )  describing the motion along the z 
direction satisfies the equation H&(z)  = E V ( z ) ,  where E is the particle energy and the 
effective-mass Hamiltonian is given by 

H = -(h2/2m,)V2 + e2B2z2/2m,c2 - (iehBz/m,c)(d/dy) + V o ( z )  

H o  = -(h2/2m,)(d2/dz2) + Im,w:(z - zo)’ + V,(z)  (2) 
where the free-particle motion along x has been ignored. Here we have used the 
definitions w, = eB/m,c and zo = -hk,c/eB. When Vo = constant, equation (2) reduces 
to the familiar harmonic oscillator Hamiltonian, the solutions of which are the equi- 
distant Landau levels having the same energy hw,(n + 4) for any k,-value. In the presence 
of a step-like potential V o ( z )  the translational invariance along z is broken and the 
eigenvalues of (2) depend on zo ,  the coordinate of the classical cyclotron orbit centre 
[26]. The observed reduction in the tunnel current in a single barrier placed in a magnetic 
field [26] can be easily understood in terms of the increase in the effective barrier height 
due to the diamagnetic term in (2). If one assumes that the magnetic field is confined to 
the barrier region, then the last two terms in (2) can be viewed as giving an effective 
potential barrier. 

Therefore our calculation is performed in a straightforward way by solving exactly 
the Schrodinger equation in each region (barrier and well) and applying the continuity 
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Figure 1. Typical potential structure for resonant 
tunnelling experiments at E = 0 applied magnetic 
field. In this work, Vn = 0.3 eV, I = 25 A, d = 
50 A, m, = 0.067 and mb = 0.087. 

a1 b l  

of the logarithmic derivative at each boundary. A representative multilayer stack is 
diagrammatically drawn in figure 1 where d and 1 are the barrier and well widths, 
respectively. We shall assume that the transverse magnetic field is confined from region 
2 to 2n both included in ( a l ,  b l ) .  The solution of the Schrodinger equation in region 1 is 
a linear combination of an incident and a reflected plane wave: 

q l ( z )  = exp(iklz) + Rexp(-ik,z) (3) 
where R is a constant, k l  = w / h  and m ,  is the effective mass in the narrow gap of 
the GaAs layer. Equation (2) can be solved analytically in pair (barrier) and odd (well) 
regions as 

q b . w ( Z )  = A h . w f b . w ( Z )  + B b , w g b , w ( z )  

f b , w ( z )  = U(ab.w, i, c 2 )  exp(-ic2) 

g h . w ( Z )  = M(ab.,, i, f 2 )  exp(-1C2). 

a b  = [1 - (2/h(I.)b)(E - VO + h2k:/2mb)] 

f 2  = (Be/hc)(z  + chk, /eB)* 

(4)  

( 5 a )  

(5b)  

(60) 

(6b) 

where Ab,+, and Bb,, are 4(n - 1) arbitrary constants and 

U and M are confluent hypergeometric functions [27] (see appendix), and 

where mh (m,) is the electron effective mass in the barrier (well), Vo is the barrier height 
and (I.)b = eB/mbc. In the well-like regions, 

a ,  = [I - (2 /ho , ) (E  + h2k;/2m,)] (7) 

V 2 n + l  = t exP(--ik(2n+1)4 (8) 

and (I.), = eB/m,c. In region 2n + 1 we again have a plane wave [28]: 

where z is a new constant. If we apply the usual boundary conditions at the well-barrier 
interfaces, this yields in matrix form 

where the matrix N(z) is 

and 
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Figure2. DB transmission probability T ( E ,  n = 2) 
for different values of the magnetic field: -, 
this work; ---. from [25]. The potential energy 
profile used at B = 0 is shown in the inset (d = 
200 A ,  1 = 30 A ,  m, = 0.067, mb = 0.087, I/, = 

0.04 eV and V I  = 0.11 eV). 
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Figure 3. Transmission probability T ( E ,  n = 3) 
for different values of the applied transverse mag- 
netic field: -, B = 0 T: ---, B = 10 T; -.-, 
20 T. The potential profile used at B = 0 T is the 
same as in figure 1. 

S ( 2 )  = S b ( Z  = O)S,'(z = d)Sw(Z = d ) S , ' ( z  = d + l ) S b ( Z  = d + 1) 

(11) . , . S i 1  [ z  = nd + (11  - 1)1] 

where the transfer matrices 

The transmission probability T(E)  can be found from ( 9 )  as T ( E )  = k l N ~ l ( z ) / k ( 2 n + l )  
[28]. Therefore, 

T@) = (4kl/k(2n+,$[(cy + k1)/%2r1+1)12 + [y / ( k1  - k(2n+1)P12) (13) 
where cy, P ,  y ,  6 are the elements of the S(z) matrix. 

Let us consider explicitly one-electron tunnelling through a DB structure placed in a 
transverse magnetic field. It is well known that resonant tunnelling [29] occurs at an 
incident particle energy E o  where there is a quasi-local level within the barriers. The 
transmission probability has a sharp peak near E = E ,  and the thickness of the confining 
barriers mainly affects the width of the peak, the latter being related to the lifetime for 
escape out of the well [24]; this peak gives in turn the dominant contribution to the 
tunnelling current through the DB. We have used in our calculation the same barrier 
potential profile for GaAs-Gal ..,Al,As as in [25] (shown in the inset of figure 2). The 
magnetic field is assumed to be confined [30] in the barrier region (in the (a2, 6*) interval 
of the inset of figure 2).  The transmission probability T ( E )  for the DB (where E is the 
incident particle energy) has been calculated with ri = 2. Figure 2 shows the logarithm 
of T ( E )  (obtained in this work) plotted for several values of the applied magnetic field 
B and compared with the WKB transmission probability, under the magnetic field action, 
obtained by Ancilotto [25]. He computed two linearly independent (numerical) solutions 
of the Schrodinger equation in the interval (u2 ,  b 2 ) ,  matching them with the plane-wave 
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solutions, and using the same electron effective masses inside the well and barriers. The 
curves shown in figure 2 refer to the particular case zo = -fik,c/eB = 0 (symmetric 
effective barrier) where T ( E )  is a maximum. We have chosen zo = 0 (as in [25]) in order 
to compare appropriately both methods of calculation. An average over this coordinate 
yields the expected reduction, in the tunnelling current, proportional to exp( -B2)  for 
DB heterostructures [31] (figure 2). We have superimposed the B # 0 curves on the B = 
0 curve; actually they should be slightly shifted as in [25]. Note that the value of T(E)  at 
resonance is not affected by the magnetic field, but the overall shape of the transmission 
coefficient reflects the expected reduction in current along the heterostructure axis [ 191, 

As another example, we have calculated the T(E)-value for a GaAs-Gao ,Ala 3 A ~  
superlattice with n = 3 (two wells and three barriers), d = 50 A (barrier) and 1 = 25 A 
(well). The required confluent hypergeometric functions have been exactly obtained as 
shown in the appendix. In this case we have taken different electron effective masses for 
wells and barriers as our expressions allow us to do. Figure 3 shows the transmission 
probability T (in logarithmic scale) versus the energy E of the incident particle, for 
several values of the applied magnetic field. At B = 0 we find that one recovers the well 
known structure of two peaks of T ( E )  for two wells and three barriers [32]. The strong 
reduction in the tunnel current in figures 2 and 3 with increasing B is a consequence of 
the change in the momentum in the current direction induced by the Lorentzforce (from 
a semiclassical point of view). If the magnetic field is confined to the barrier region, then 
the last two terms in (2) can be viewed as giving an effective potential barrier that 
increases with increasing B (so decreasing the transmission coefficient). However, a 
strong enhancement of the transmission coefficient at resonance takes place and the 
electron can easily complete its orbit through the barriers without being scattered so 
that the resonance peak will always be equal to unity at resonance although the field B 
increases. The combination of the latter two effects explains the fact that the main peak 
in figures 2 and 3 narrows when the field increases. 

In summary, we have calculated the transmission coefficient T ( E )  for tunnelling 
through DB heterostructures and superlattices under transverse magnetic fields in a 
transfer matrix model. The one-dimensional effective-mass equation has been solved 
first analytically by means of the confluent hypergeometric functions as envelope func- 
tions. These have been shown to be a powerful tool for the analysis of several physical 
properties. We have found the expected reduction in current along the heterostructure 
axis due to the Lorentz force as reflects the shape of T(E) .  Finally, let us mention that 
our method gives exact results in narrow-barrier structures when the WKB approximation 
is not valid. The present work can be extended to energies above the barrier because 
confluent hypergeometric functions account for these states too; this will be the subject 
of a future work. 
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Appendix 

The confluent hypergeometric functions M ( a ,  b ,  x )  and U(a,  b ,  x )  obtained as analytical 
solutions of equation (2) can be found in [27], where x is the variable. These functions 
are defined as follows: 
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M ( a ,  b , x )  = 1 + ax/b + ( ~ ) ~ x ~ / ( b ) ~ 2 !  + . . . + ( ~ ) # / ( b ) , ~ n !  + . . . (Al l  

(A21 

U(a ,  b ,  x )  = [~~/sin(nb)][M(a, b,  x)/T(l + a - b)r(b) 

- x ~ - ~  ~ ( i  + U - b, 2 - b, x)/r(a)r(2 - b)]  

where (a),, = a(a + l)(a + 2) . . . (a  + n - l ) ,  a. = 0, and analogously for (b),,. Taking 
the values of a, b ,  x from (5a) and (56)  and expanding (Al)  and (A2) in a series of Bessel 
functions Jn of fractional order, we find that 

where a. = 1, a1 = 0, a2 = a, (n  + l ) c ~ , , + ~  = (n  - ;)an-1 + (2a - f)an-2, PO = 1, PI  = 
0, P2 = i, (n  + l )Pn+ l  = (n  + &)pa-, + (2a - B)/3n-2 and kl  = d2ml(E - V,). Adding 
a large number of terms in the expansions (A3) and (A4) until we obtain convergence 
in the series, we can computef(z) andg(z) exactly. We can recover from (A3) and (A4) 
the well known envelope functions in the absence of external fields (B + 0) for a finite 
quantum well: two plane waves. Note that in (A3) and (A4) for high B-values (B > 30 T )  
we must take a very large number of terms in the expansions to obtain convergence, 
needing longer computer time than for low B-values (in which case the calculation is 
straightforward and very fast). However, other theoretical methods such as that of 
WBK, involve the computation of two linearly independent numerical solutions of the 
Schrodinger equation requiring a long computer time for all B-values. Otherwise, the 
confluent hypergeometric functions account for any size of barriers, particularly for 
narrow barriers when the WBK method fails. 
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